Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland

Tim Griffis^{1*}, Tyler Roman², Jeff Wood³, Julian Deventer^{1,4}, Lizardo Fachin⁵, Jon Rengifo⁵, Dennis Del Castillo⁵, Erik Lilleskov⁶, Randy Kolka², Rod Chimner⁷, Craig Wayson⁸, Kristell Hergoualc'h⁹, John Baker¹⁰, Hinsby Cadillo-Quiroz¹¹ and Dan Ricciuto¹²

¹Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, USA;

²USDA Forest Service – Northern Research Station Grand Rapids, MN, USA; ³School of Natural Resources, University of Missouri, Columbia, MO, USA; ⁴University of Goettingen, Bioclimatology, Goettingen, Germany;

⁵Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru;

⁶USDA Forest Service, Houghton, Michigan, USA;

⁷Michigan Technological University, Houghton, Michigan, USA; ⁸USDA Forest Service, International Programs, Washington, D.C., USA; ⁹Center for International Forest Research, Jalan, Situgede, Indonesia ¹⁰USDA-ARS and University of Minnesota, Saint Paul, MN, USA ¹¹Arizona State University, Tempe, AZ, USA;

¹²Oak Ridge National Lab, TN, USA.

Contact: (timgriffis@umn.edu)

Project Lead Principal Investigator (PI): Tim Griffis **BER Program**: Terrestrial Ecosystem Sciences (TES) **Project**: University Project Award Number DE-SC0020167

Project Website: https://www.biometeorology.umn.edu/research/amazon-flux

Project Abstract:

Tropical peatlands are a major, but understudied, biophysical feedback factor on the atmospheric greenhouse effect. The largest expanses of tropical peatlands are located in lowland areas of Southeast Asia and the Amazon basin. The Loreto Region of Amazonian Peru contains ~63,000 km² of peatlands. However, little is known about the biogeochemistry of these peatlands, and in particular, the cycling of carbon dioxide (CO₂) and methane (CH₄), and their responses to hydrometeorological forcing. To address these knowledge gaps, we established an eddy covariance (EC) flux tower in a palm (Mauritia flexuosa L.f.) swamp peatland near Iquitos, Peru. Here, we report ecosystem-scale CO₂ and CH₄ flux observations for this Amazonian palm swamp peatland over a two-year period. The seasonal variation in hydrometeorology (wet versus dry seasons) had a strong effect on CO₂ and CH₄ fluxes. High air temperature and vapor pressure deficit (VPD) exerted an important limitation on photosynthesis during the dry season. Evidence from light- response analyses and flux partitioning support that photosynthetic activity was strongly downregulated during the dry seasons. The cumulative net ecosystem CO_2 exchange indicated that the peatland was a significant CO_2 sink ranging from -420 (-349 to -543) in 2018 to $-455(-384 \text{ to } -542) \text{ g C m}^{-2} \text{ y}^{-1}$ in 2019. The forest was a CH₄ source of 27 (24 to 30) g C m⁻² y⁻¹, similar in magnitude to other tropical peatlands and larger than sub-boreal peatlands. Thus, the annual carbon budget of this Amazonian palm swamp peatland appears to be a major carbon sink under current hydrometeorological conditions.