Next-Generation Ecosystems Experiment (NGEE Arctic): Progress and Plans

Stan Wullschleger1*, Robert Bolton5, Amy Breen5, Baptiste Dafflon3, David Graham1, Sue Heinz1, Susan Hubbard3, Colleen Iversen1, Alistair Rogers4, Vladimir Romanovsky5, Joel Rowland2, Peter Thornton1, Margaret Torn3, William Riley3, and Cathy Wilson2

1Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
2Los Alamos National Laboratory, Los Alamos, NM
3Lawrence Berkeley National Laboratory, Berkeley, CA
4Brookhaven National Laboratory, Upton, NY
5University of Alaska, Fairbanks, AK

Contact: (wullschlegsd@ornl.gov)
Project Lead Principle Investigator (PI): Stan Wullschleger
BER Program: TES
Project: NGEE Arctic
Project Website: https://ngee-arctic.ornl.gov/

The Next-Generation Ecosystem Experiments (NGEE Arctic) project seeks to improve the representation of tundra ecosystems in Earth System Models (ESMs) through a coordinated series of model-inspired investigations conducted in landscapes near Utqiaġvik (formerly Barrow) and Nome, Alaska. In Phase 1 (2012 to 2014), we tested and applied a multiscale measurement and modeling framework in a coastal tundra ecosystem on the North Slope of Alaska. In Phase 2 (2015 to 2019), three additional field sites were established on the Seward Peninsula in western Alaska. Integrated field, laboratory, and modeling tasks allowed our team to focus on understanding (1) the effect of landscape structure on the storage and flux of C, water, and nutrients, (2) geochemical mechanisms responsible for CO2 and CH4 fluxes across a range of permafrost conditions, (3) variation in plant functional traits across space and time, and in response to changing environmental conditions and resulting consequences for ecosystem processes, (4) controls on shrub distribution and associated biogeochemical and biophysical climate feedbacks, and (5) changes in snow processes and surface and groundwater hydrology expected with warming in the 21st century. A major outcome of our Phase 1 and 2 research was an integrated set of in situ and remotely sensed observations that quantify the covariation of hydro-thermal, ecosystem, vegetation dynamics, and biogeochemical function. Now in Phase 3 (2020 to 2022) we build upon our research at sites on the North Slope and in western Alaska, while also adding a cross-cutting component on disturbance. Field campaigns, modeling, and data synthesis are used to target improvements in simulating disturbance-related processes (e.g., wildfire and abrupt permafrost thaw) and connections to dynamic vegetation (e.g., shrubs) that are missing from or poorly represented in ESMs. Our vision strengthens and extends the connection between process studies in tundra ecosystems and high-resolution landscape modeling and scaling strategies developed in Phases 1 and 2. Safety, national and international collaboration, and a commitment to diversity and inclusion continue to be key underpinnings of our research approach and team philosophy in the Arctic.